MDA 2023 Engage Symposium

Orthopedic Aspects of Spinal Muscular Atrophy: Evolving Treatments in the Age of Disease Modifying Therapies

Jason J. Howard, MD, FRCSC

Pediatric Orthopedic Surgeon Orthopedic Lead, Nemours Muscle Clinic Department of Orthopedic Surgery Nemours Children's Hospital-Delaware, Wilmington, DE, USA

June 3rd, 2023

Alfred I. duPont Hospital for Children

Disclosures

2022 ACCEL-CTR-DE Research Grant

"Quantification of muscle stiffness in spastic hemiplegic cerebral palsy using magnetic resonance elastography

2020 POSNA Basic Science Research Grant

"Muscle Stiffness in Cerebral Palsy: The Effect of Botulinum Toxin"

Consultancy:

• None

Acknowledgement, Nemours Muscle Clinic:

- Drs. Mena Scavina (Neurology), Robert Heinle (Pulmonology), Eileen Shieh (Rehab Medicine)
- Amanda Erb PT, Jen Hultberg (Coordinator)

Spinal muscular atrophy

- Relatively common
 - 1/6000-1/10,000
- Autosomal recessive
- Progressive neuromuscular disorder
 - Spectrum of functional impairment, age of onset
- Spinal cord anterior horn cells affected
 - Low muscle tone, no reflexes
 - Proximal weakness, lower > upper extremity
 - Respiratory muscles involved

Survival motor neuron (SMN) protein

Important for neuronal development

SMN1 gene involvement

- SMN protein affected
- Anterior horn cell degeneration

• SMN2 gene

- Much less viable SMN protein (5-10% of normal)
- SMN2 Copy number important, more protein
- Generally, Type I: <2 copies, Type II,III: ≥3 copies

Disease-modifying agents target these genes

Nusinersen, Risdiplam, Onasemnogene abeparvovec

TYPE I - Acute Infantile

Onset: birth - 6mos

- Floppy baby
- Severe motor delay
- Can't sit independently
- Improved respiratory function with gene Rx

TYPE II - Chronic Infantile

Onset: 6-18mos

- Head control / sitting ok
- Wheelchair mobility
- Improved ambulatory function with gene Rx

Type III Kugelberg-Welander

Onset: 2 - 15yrs

- Hip extensor weakness
- Trendelenburg gait
- Lumbar lordosis
- Crouch/Knee hyperextension (quads weakness)
- Wheelchair as adults
- Near normal lifespan

Orthopedic Rx non-controversial

Disease-modifying agents (DMAs)

• Nusinersen (Spinraza[™])

- Delivered by lumbar puncture or *tunnelled port*
- Modifies <u>SMN2</u> gene splicing
- More SMN2 = more SMN protein
- Improved survival and motor development
- Risdiplam (oral)

Onasemnogene abeparsovec (Zolgensma[™])

- Replaces the defective <u>SMN1</u> gene
- Similar improvements in function

These agents have changed the way Orthopedists think about SMA

Hammersmith Functional Motor Scale

- Validity and reliability confirmed for SMA, developed primarily for Types II, III
- 66 max total score
- Has been correlated with SMN2 copy #, FVC, muscle strength
- Used to document functional change after DMA Rx

Orthopedic Aspects of SMA

• Scoliosis

- Seating imbalance
- Standing/walking impairment
- Respiratory dysfunction(?)

• Hip instability

- Painful arthritis
- Standing/walking impairment

Fractures

- Bone fragility
- Tibia/femur most common

Orthopedic Aspects of SMA

Gait abnormalities

- Traditionally Type III
- With Disease modifying agents, Type II
- Lower extremity muscle contractures
- Hip instability

Standing impairment

- Types I and II
- Lower extremity muscle contractures
- Hip instability/scoliosis

Type III SMA Tight heel cords, toe-walker

DMA Rx is changing attitudes...focus on function

Scoliosis in SMA

Very common

• 60-90% Type I/II

Earlier onset than idiopathic cause

• 7-8 years-old

Proportional to functional level

- DMAs likely having an impact
- Seating problems
- Difficult with care giving
- Respiratory decline concurrent

Double-major curve Type II SMA

Bracing for Scoliosis in SMA

- Seating support
- Does not improve scoliosis
- Can exacerbate respiratory dysfunction
- Abdominal cutout for G-tube, breathing
- Semi-rigid best

Curves > 50-60° indicated for surgery

Image from: https://nationalscoliosiscenter.com/blog/scoliosis-insights/how-bracing-can-help-childhood-spinal-muscular-atrophy/

Goals of Scoliosis Surgery in SMA

- Comfortable SEATING
- EASE OF CARE-GIVING
- SOCIAL INTERACTION
- Decrease pain
- •Benefits > Risks

DMAs improving function, decreasing risk

Types of scoliosis surgery

8-10: individualized Rx AP STANDING

Growth-friendly < 8 years-old

Definitive fusion > 10 years old

Nusinersen access after spinal fusion: Options

- Laminectomy (L3) for intrathecal access
 - Clips at spinous process of L2/L4 for IR easy visualization for intrathecal access
- Convert to oral Risdiplam (Evrsdi®)
- Intrathecal catheter port

Preliminary Safety and Tolerability of a Novel Subcutaneous Intrathecal Catheter System for Repeated Outpatient Dosing of Nusinersen to Children and Adults With Spinal Muscular Atrophy

Kevin A. Strauss, MD,* Vincent J. Carson, MD,* Karlla W. Brigatti, MS, LCGC,* Millie Young, RNC,* Donna L. Robinson, CRNP,* Christine Hendrickson, RNC,* Michael D. Fox, MD,†‡ Robert M. Reed, MD,§ Erik G. Puffenberger, PhD,* William Mackenzie, MD,†|| and Freeman Miller, MD†||

J Pediatr Orthop • Volume 38, Number 10, November/December 2018

Dr. Freeman Miller

Chest deformity in SMA

Bell-shaped chest

- Intercostal muscle weakness
- Relatively strong diaphragm
- Ribs sag, lack of support
- Respiratory decline over time

Does scoliosis surgery help?

- Not addressing the primary problem
- Respiratory decline can vary with age
- Prior studies not controlled

Alfred I. duPont

Nemours.

Chicken, egg, or two different chickens?

Chest gets worse despite early scoliosis surgery

(Courtesy, Dr. Ron El-Hawary)

Nemours.

Pre-DMA Treatment era

The impact of scoliosis surgery on pulmonary function in spinal muscular atrophy: a systematic review

Abduljabber Alhammoud^{1,2} · Yahya Othman³ · Ron El-Hawary⁴ · William G. Mackenzie⁵ · Jason J. Howard⁵

Evidence-based State	ement	GRADE Recommendation		
Surgery is most often a decreases in pulmona	ssociated with Y function	С		
The impact of surgery of function is variable but improve over pre-ope	on pulmonary does not reliably rative baseline	С		
Surgery may result in a decline in pulmonary for operatively	decreased rate of unction post-	С		
Alfred I. duPont Hospital for Children	GRADE C – poor or conflicting evidence bas			

Growth Friendly

Nemours. Alfred I. duPont Hospital for Children

(Ulusaloglu, Howard et al, POSNA 2023)

Risk factors for Scoliosis in SMA

Overall prevalence 52%

- Age of onset: 7.2 years-old
- 34(SD:22)° to 48(SD:29)° over 7y FU

Proxies of disease severity (non-ambulatory)

DMA treatment did not prevent scoliosis

	Un	ivariate	Multivariate		
Risk Factor	р	Exp (B)	р	Exp(B)	
SMN2 <3 copy	.029*	2.899			
SMA type 1	.006*	8.067	0.96	4.046	
SMA type 2	.076	3.667	0.529	1.68	
DMA treatment	.066	0.335			
Non-ambulatory, FMS ₅₀ =1	.039*	3.378			
Hip displacement	<0.001*	10.303	.003*	8.372	

(Ulusaloglu, Howard et al, POSNA 2023)

Hip instability in SMA

Hip instability is common in most neuromuscular disorders

- Cerebral palsy (CP) being the most studied
- Also highly prevalent in SMA, linked to functional level
- Hip abductor weakness, lack of functional weightbearing
- Leads to laterally directed growth of the proximal femur (ball), acetabulum (socket) dysplasia
- Eventual dislocation, osteoarthritis
 - BUT variable outcomes in prior studies, small numbers.
 - Recent studies show higher pain prevalence than previously thought (58%)

*(Xu et al, JPO 2022)

Hip Pain in SMA

Risk Factors

- Obesity
- Prior scoliosis surgery with fusion to pelvis
- Hip contractures
- Hip dislocations

• Higher pain with \uparrow SMN2 copies, Type II > Type I

• Better function, more strength

Impact of DMAs on hip pain unknown

• Higher function may lead to more pain (muscle force)

*(Hanna et al JBJS OA 2023; Xu et al, JPO 2022)

Type I SMA with progressive hip displacement

2 years-old

5 years-old

7 years-old

Usually painless until later, not all develop pain

SMA hip instability: X-ray features

- Growth plate tilt (*)
 - Ball tilts laterally
 - 'Coxa valga'
 - Pressure on the socket
 (**)
- Acetabular dysplasia
 - Progressive
 - Lack of support (roof)
 - Dislocation

Type II SMA, Nusinersen, able to walk

Indications for surgery: Pain, walkers, DMA treatment?

Direct the 'ball' into the socket

SMA hip instability: Surgical Treatment

Prevent arthritis, improve seating, improve positioning/perineal care

Risk factors for Hip Instability in SMA

• 82 patients with SMA, Nemours Muscle Clinic

- Type I: 39%, II: 44%, III: 17%
- Hip surveillance X-rays
- Risk factors investigated
 - Genetic severity (# of SMN2 copies)
 - SMA Type
 - DMA Treatment > 2 years (mostly Nusinersen)
 - Walking status
 - Hammersmith Motor Scale (66 max score)
 - Presence of Scoliosis (>40°)

Hip surveillance X-ray with MP measurement

(Ulusaloglu, Howard et al, POSNA 2022)

Prevalence of hip displacement in SMA

(Ulusaloglu, Howard et al, AACPDM 2022)

SMA Type

Prevalence

Risk Factors for Hip Displacement

	Univariate Analysis		Multivariate Analysis*		
	EXP (B)	Sig.	EXP (B)	Sig.	
	OR	Р	OR	р	
SMA Type 1	9.72	0.002	1.439	0.731	
SMA Type 2	9	0.002	6.185	0.038	
SMN2 Copy < 3	2.703	0.107	6.732	0.088	
HFMS ≤23	9.8	0.01	-	-	
Non-ambulatory			-	_	
(FMS ₅₀ =1)	7.636	0.001		-	
Scoliosis	14	0.014	9.698	0.039	
DMA Treatment	4.5	0.011	-	-	

*Backward Multivariate Logistic Regression Analysis

• Independant risk factors

- SMA Type II (OR: 6.2)
- Scoliosis (OR: 9.7)

DMA Rx not protective

- 66 (80%) patients w/ DMA
- 64% Nusinersen
- Hammersmith Score > 23 was protective

DMA treatment did not prevent hip instability

Should we treat hip Instability in SMA?

- We know the risk factors
- Prior studies on SMA hips controversial (except Type III)
 - No DMA Treatment
 - Poor outcome measures
 - Better medical management now

DMA treatment influential

- Patients are stronger
- More ambulatory
- Can better tolerate bigger surgeries

Although DMA treatment does not seem to prevent hip instability, <u>increased function</u> <u>reported to lead to higher risk</u> <u>of moderate to severe pain</u>*

Pre-op bisphosphonates, especially for Type I

*(Hanna et al, JBJS OA 2023; Xu et al, JPO 2022)

16 year-old F with painful left hip (Type II)

Pain improved Arthritis

Will we see more of this after DMA treatment?

Guided growth may provide a low-risk Hip Rx

4y8m old

32 MONTHS POSTOP

NEWER MINIMALLY INVASIVE OUTPATIENT R_x USED IN CEREBRAL PALSY

MAY HOLD PROMISE FOR SMA AS WELL

Muscle Contractures in SMA

- Muscle imbalance
- Lower > upper limbs
 - Tight heel cords (equinus)
 - Knee flexion contractures
 - Hip flexor/adductor>abductor contractures

Foot deformities

- Equinovarus ('clubfoot')
- Planovalgus ('flatfoot')
- Toe flexor contractures

Equinovarus foot Affecting wheelchair footplate positioning/orthotic fitting

Contractures worsen by SMA Type and with age...braces may delay but not prevent

The Foot as a lever

The right brace can turn a flexible foot deformity into a stable lever

Goals of Muscle Contracture Surgery in SMA

Improve sitting

• Wheelchair seating

Improve standing

- Traditionally Type II
- With Disease modifying agents, Type I

Improve walking

- Traditionally Type III
- With Disease modifying agents, Type II
- Orthotic/shoe fitting

DMA Rx is changing attitudes...<u>focus on function</u>

Type II SMA (DMA Rx) Knee flexion contracture Affecting walking

Slide Lengthening TAL

- Double hemisections White
- Triple hemisections Hoke

Z Lengthening TAL (Open)

Heel Cord Advancement (HCA)

Crouch gait after heel cord lengthening (CP)

Knee flexion contractures limiting gait

10 year-old F Type II SMA, early Nusinersen trial, walking Progressive knee flexion contractures

Physical Examination

Alfred I. duPont

Hospital for Children

Nemours.

	PASSIVE ROM			STRENGTH				
	Right		Left		Right		Left	
Hip Flex	125	140	125	120	2+	3+	2	3+
Hip Ext	-15	15	-15	15	2	3-	2	3-
Hip Abd	28	30	28	25	2	3-	2	3-
Hip Int Rot	45	45	48	55				
Hip Ext Rot	35	45	34	55				
Knee Ext	-23	-15	-25	-5	3+	3+	3+	3+
Knee Flex	WNL	145	WNL	145	3+	3+	3+	3+
Pop Angle	55 55	30 30	65 60	45 45				
Ely Test	120	145	120	145				
Dorsi (flex)	10	15	10	25	4	3+	4	3+
Dorsi (ext)	5	15	3	15				
Plantar	35	60	35	60	4	3+	4	3+
Ankle Inv	10	60	10	45	4	3+	4	3+
Ankle Ever	40	30	45	25	4+	3+	4+	3+
ТМА	30 EXT	15 EXT	20 EXT	15 EXT				

5 years-old 10 years-old

Progression in muscle contractures

- Knee
- Hip

Some decrease in strength around the hip but otherwise preserved/improved

Knee flexion contractures limiting gait (braces)

Nerr Better with braces but knee flexion requires quads activation = fatigue

Guided growth: gradual correction, easier rehabilation

Growth plate tether

- Anterior (front)
- Untethered at the back

Gradual improvement over time

- 1° per month
- Weightbearing
- Easier rehab than bony osteotomy

Minimize immobilization, early weightbearing and ambulation are key after surgery

Case: 9yo M, MMC, Diastomatomyelia w/ 30° fixed knee contracture

Time for screw removal WHEN DEFORMITY CORRECTED or when end of growth

Peri-operative considerations

Respiratory optimization

- Pulmonary function tests essential
- Pneumonia/Resp failure risks
- Related to SMA Type

Nutritional optimization

- Reduces infection risk
- Improves wound healing

Bone health optimization

- Bone Density (DEXA) scan
- Need strong bone to hold implants
- Reduces risk of fracture
- Consider bisphosphonates, especially for Type I

Type I SMA DEXA scan distal femur

Solid Ankle-Foot Orthosis (SAFO)

- GRF: augmented, in front of knee
 - CROUCH, minimal knee FC
- Appropriate for SMA walkers when soleus/quads weak
- Corrects flexible foot deformity
- Requires ankle DF to at least 0 deg
- Stair climbing more difficult
- Better tolerated than GRAFO

Focus on function: Different patients need different braces

Summary

- Disease-modifying agents (DMA) targeting SMN1 and SMN2 genes improve function in SMA
- Orthopedic problems seem to develop despite DMA treatment
- DMA treatment improves medical aspects of SMA, allowing safer surgeries
- Given improvements in strength with DMA treatment, hip arthritis may become a bigger problem
- Scoliosis surgery for functional goals and quality of life, not pulmonary function
- Surgical decision-making should focus on functional goals and surgical "dose"

Medical literature lagging behind advances in SMA gene Rx... Need more studies to determine orthopedic outcomes in this new era

