

What's New in Duchenne Muscular Dystrophy 2022

Slide Set Overview

Review of Duchenne Muscular Dystrophy (DMD)

- Clinical presentation, pathology
- Diagnostic considerations
- Clinical management of DMD
 - Multidisciplinary approach to care
 - Current and emerging therapies
- DMD resources

Duchenne muscular dystrophy (DMD)

- DMD is a rare, progressive, X-linked recessive, muscular dystrophy, affecting predominantly males
- DMD occurs in 1 in 5,000 male births and is the most common childhood-onset muscular dystrophy^{1,2}
- DMD is caused by mutations in the *DMD* gene that result in absent or decreased dystrophin, a muscle membrane protein^{2,3}
- Dystrophin plays a key structural role in muscle fiber function and protects against damage during normal muscle contraction

Dystrophin-associated complex⁴

Clinical signs and symptoms^{1,2}

Motor signs^{1,2}

- Abnormal gait: waddling
- Frequent falls
- Difficulty climbing steps
- Difficulty getting up from the floor >2"
- Delayed walking
- Toe walking
- Lordosis
- Never able to jump or hop
- Abnormal running
- Enlarged calves

Non-motor signs^{1,2}

- Cognitive delay
- Learning deficits
- Attention deficits
- Language delay or difficulty

DMD pathology: Genetics and reading frame theory

- Mutations that disrupt the reading frame (i.e. "out-offrame" deletions) such as 48-50, lead to complete loss of dystrophin protein
- Mutations that do not disrupt the reading-frame, allow for production of some dystrophin reduced in size/amount, resulting in a milder phenotype

DMD vs BMD: Differential diagnosis

 Dystrophinopathies share common pathology and symptoms along a spectrum, but symptoms are most severe among individuals with DMD

DMD		BMD
 More severe Earlier onset (always before age 5) Faster progression Reading frame disrupted 	Intermediate phenotypes	 Less severe Later onset Slower progression Reading frame preserved
	•	600000000000000000000000000000000000000
Absent dystrophin		Reduced but functional dystrophin

Example: Muscle biopsy and dystrophin staining

Normal

BMD

DMD

Normal

Images courtesy of E Ciafaloni

Mild BMD

DMD

Stages of DMD Progression

8

Diagnosis: Recommended tests

- Elevated CK level is a hallmark sign of DMD and always elevated from infancy
- Genetic testing is confirmatory in >95% of DMD cases
 - Muscle biopsy conducted <u>only</u> if genetic test is negative and can confirm DMD diagnosis based on absent dystrophin ¹
 - Muscle biopsy rarely needed (<5%)

Diagnostic delay in DMD

- An analysis of MD STARnet data indicates a ~2.5-year delay between symptom onset and DMD diagnosis
- Concerns often first noted at ~2 years of age
- First evaluation by a neuromuscular specialist is at ~4.5 years of age
- Definitive diagnosis is at ~5 years of age

Table I. Timeline of diagnostic steps for patients with Duchenne dystrophy without family history of dystrophy (N = 156).

Measure	n	Mean years of age ±SD	Range, years of age
Earliest sign or symptom noted	111	2.5 ± 1.4	0.2-6.1
First evaluation by health specialist	127	3.6 ± 1.7	0.2-8.0
First neurology/neuromuscular visit	131	4.6 ± 1.7	0.3-8.6
First CK test	151	4.7 ± 1.7	0.3-8.6
Age at definitive diagnosis	154	4.9 ± 1.7	0.3-8.8

Delay of ~2.5 years

Early CK testing can reduce delay in diagnosis

Common causes for diagnostic delay

- Non-universal screening of lab abnormalities at birth
 - Screening for CK/transaminase levels is not a universal standard
 - CK should be tested in any boy with early motor/ developmental delay
- Subtle signs of early disease missed
 - Earliest signs are noted by parents and not trained professionals who may be more adept at recognizing subtle delays
- Cognitive delay/"autism" and DMD can be a comorbidity and may delay DMD diagnosis

Improving diagnosis

- Early CK testing in boys with developmental delay may help speed definitive diagnosis and enable earlier treatment
- DMD is <u>not</u> currently included on the Recommended Uniform Screening Panel for genetic testing^{1,2}
 - Treatments may be most effective if initiated early in disease onset/prior to symptom onset
- Efforts are underway by advocacy and government groups to implement newborn screening for DMD nationwide³

Progress in DMD newborn screening

2007-2011	Ohio Duchenne Newborn Screening (DNBS) pilot study establishes success of a 2-tier approach to identify infants with DMD ¹ — Dried blood spot first tested for elevated CK, then genetic testing
Sep 2018	Pilot program initiated in NY state (a high birth-rate state) ² – First baby tested in Oct 2019 – Projected to screen up to 100K infants
Dec 2019	FDA authorizes GSP Neonatal Creatinine Kinase-MM kit ³
	With ongoing success of pilot programs, DMD screening is likely to be adopted into state-based programs nationwide

1. Al-Zaidy S, 2017. 2. Muscular Dystrophy News, 2019. 3. FDA, 2019

Clinical Management of DMD

DMD care guidelines continue to evolve

• Care guidelines were updated in 2018 to align with the evolving DMD landscape^{1,2}

- Prolonged survival associated with optimized multidisciplinary care has shifted care goals towards prevention, earlier identification, and treatment of predictable and modifiable complications
- With patients surviving longer, more emphasis can be placed on quality of life, psychosocial management, and ensuring smooth care transitions across the lifespan
- Therapeutic options continue to emerge

2010² Care considerations	Diagnostic advancesNew therapies	2014-2018 Review and revision of	Emerging therapies
published	Improved survival	care considerations	

Multidisciplinary care has improved DMD outcomes

- A proactive and multidisciplinary approach has prolonged survival and improved outcomes in DMD¹⁻³
 - Prior to 1970, a patient with DMD could expect to live until their 20s³
 - Those diagnosed after 1970 can expect to live into their 40s³
- Requires coordination of specialists throughout the different stages of the disease^{1,2}

Pre- symptomatic		Early Ambulatory		Late Ambulatory		Early non- ambulatory		Late non- ambulatory
	F	Provide multidisciplin	ary, s	tandardized assessme	nts (a	t least every 6 months)		
Provic	le occ	upational, physical,	speed	ch therapy based on as	sessm	nents and individualized	d to pa	atient
Prevent contractur	°es, o∖	ver-exertion, falls			Cor	ntinue all prior measure	es	
Promote energy c a	onser ctivity			Provide mobilit	y-assi	istive devices, assist in	pain	management
_								
Provide orthoses, su	equip ipport	oment, learning		Advocate for fun	ding, a	access and self-actualized	zation	into adulthood

Pre- symptomatic		Early Ambulatory		Late Ambulatory		Early non- ambulatory		Late non- ambulatory
		Measure sta	Inding	and non-standing grov	vth (e	very 6 months)		
			As	ssess pubertal status st	arting	by age 9 (every 6 mor	nths)	
		Provide f	amily	education and stress d	ose s	teroid prescription (if or	n corti	costeroids)
Initiate of	besity	•		nt by registered dietic onitor for over- or unde	•		tical tr	ansitions
		Assess	serur	m vitamin D and calciur	n inta	ke (yearly)		
		Assess sv	vallow	ing dysfunction, consti	pation	, GERD, gastroparesis	(ever	y 6 months)
					Discu	ss gastronomy tube (ye	early)	

Endocrine

GI/ nutrition

Birnkrant DJ, 2018

Respiratory

	As					
		ssess mental health	of pati	ient and family (every	visit); provide ongoing support	
Provide	eneur	opsychological evalu	uations	s/interventions for lear	ning, emotional, and behaviora	al problems
		Assess edu	ucatio	nal needs, available re	sources and vocational suppo	ort needs (adults)
			Pro	mote age-appropriate	independence/social developm	nent
ations for		Assess transition- eadiness by age 12		adult living		
	-	-		Provide transition sup	oport and anticipate guidance	on health changes
	scuss ations for adulthood tive, early	scuss ations for adulthood tive, early plan	Assess edu Assess edu Scuss ations for Assess transition- readiness by age 12	Assess education Pro Assess transition- readiness by age 12 tive, early planning is critical	Assess educational needs, available re Promote age-appropriate Scuss ations for adulthood tive, early planning is critical Assess transition- readiness by age 12 Provide transition sup	ations for adulthood tive, early planning is critical Assess transition- readiness by age 12 Assess transition- adult living Monitor progress and enlist coordinator/social work Provide transition support and anticipate guidance

Psychosocial

Transition

Key treatment strategies in DMD

Corticosteroid therapy (standard of care)^{1,2}

Goal: Reduce inflammation to increase muscle mass/ strength

• Exact mechanism of action unknown, but likely acts on several targets

Dystrophin-restoration strategies³

Goal: Restore dystrophin by manipulating transcription/ translation activity or gene replacement³

- Exon-skipping (anti-sense oligonucleotides)
- Nonsense mutation read-through
- Gene transfer (AAV-mediated delivery of micro/mini dystrophin)

Corticosteroid therapy

- Corticosteroids are recognized as the standard of care in DMD¹⁻³
 - Steroids are effective and associated with several benefits²
- Guidelines recommend the use of prednisone or deflazacort
 - No consensus on which agent or regimen is best, but studies are ongoing

Corticosteroid therapy: Clinical trials

- Research is underway to help identify which corticosteroid regimens are most effective and may offer patients a more tolerable regimen/ agent¹⁻⁶
- Vamorolone is being evaluated as a potentially safer alternative to currently available options²

Торіс	Select Trials ⁶	
Optimal regimens	 FOR-DMD: Finding the optimum regimen for DMD (NCT01603407) Weekend steroids and exercise (NCT04322357) 	For details, visit clinicaltrials.gov
Vamorolone	Vamorolone in boys with DMD (NCT03439670)	
Combination therapy	 Pamrevlumab in combination with steroids (NCT04632940) Spironolactone vs prednisolone (NCT03777319) 	

Dystrophin restoration: Exon-skipping

Strategy: Restore the reading frame of out-of-frame (ie, DMD) dystrophin transcripts to produce partially functional dystrophins (akin to BMD)

• Different exons are skipped based on mutation size and location (mutation-specific)

Patient with DMD: Exon 48-50 out-of-frame

Out- of- frame mRNA

DMD: No dystrophin

Exon 46 Exon 47 Exon 51 Exon 52 Exon 53 Exon 46 Exon 47 AON Exon 52 Exon 53 Exon 46 Exon 47 Exon 52 Exon 53 In-frame mRNA BMD-like dystrophin

Exon 51 skipping therapy

Image courtesy of E Ciafoloni

Dystrophin restoration: Exon-skipping

- Administered via systemic IV as an add-on to ongoing oral corticosteroid therapy
- Four exon-skipping therapies have been FDA-approved^{1,2}

Exon	Population addressed ³	Agent	Status ^{1,4}
45	8-9%	Casimersen (Amondys 45)	Approved
		Eteplirsen (Exondys 51)	Approved
51	13-14%	SRP-5051	Phase 2 ongoing
		Suvodiresen (WVE-210201)	Phase 3 terminated (DYSTANCE 51)
		Golodirsen (Vyondys 53)	Approved
53	7-10%	Viltolarsen (Viltepso)	Approved
		NS-065	Phase 2 ongoing

Dystrophin restoration: Nonsense mutation-read through

Strategy: Force read-through of nonsense mutations to restore dystrophin¹

- A subset of individuals with DMD harbor *nonsense mutations* (vs *frameshifting* ones that are amenable to exon-skipping therapies)
 - In these mutations, a codon is substituted with a stop codon, which interrupts RNA translation and leads to a truncated, non-functional dystrophin
- Therapies that promote read-through may help the population of 11% of boys with DMD caused by nonsense mutations^{2,3}
- No read-through therapies are approved in the US for nonsense mutation-based DMD
 - Ataluren is approved for use in the EU

Dystrophin restoration: Gene transfer therapy

Strategy: Deliver a functional cDNA copy of dystrophin gene to muscle tissue

- Packaged and delivered to muscle tissue via an adeno-associated virus (administered as a one-time IV infusion)¹
- Delivering the dystrophin gene presents challenges due to its size¹
 - Dystrophin is one of the largest genes in the human genome (~11.4kb)
 - AAVs have a limited carrying capacity (~4.7kb)
 - Micro- or mini- dystrophin constructs have been developed to enable packaging and delivery

The dystrophin gene (Dp427)²

Gene transfer therapy: Micro- and mini-dystrophin agents in clinical trials

Clinical trial status: SRP-9001 (Sarepta)

- Phase 1 ENDEAVOR trial (NCT04626674) ongoing in boys with DMD (>4 years); enrolling via invitation only^{1,2}
- Positive results in first 11 participants²
 - Treatment generally well-tolerated; 2 participants with SAEs (nausea/vomiting, elevated liver enzymes, resolved)
 - Robust micro-dystrophin expression at 3 months (~70% vs ~12% at baseline)
- Pivotal EMBARK trial will recruit up to 120 boys with DMD at 40 sites³

EMBARK Trial: Phase 3 trial enrolling in US

Clinical trial status: SGT-001(Solid Biosciences)

- Phase 1/2 trial is ongoing and recruiting¹
- Positive results in first 6 participants²
 - Treatment generally well-tolerated; inflammatory SAE reported in 1 patient (resolved)
 - Increased micro-dystrophin at 3 months (up to ~17% of normal dystrophin); levels sustained or increased at 1-2 years
 - Decreased CK levels at 1-year post-treatment
 - Two additional patients have been dosed since data readout

Phase 1/2 IGNITE DMD Trial (NCT03368742): Recruiting

Clinical trial status: PF-06939926 (Pfizer)

- Designated **Orphan Drug** status by FDA (May 2017)
- Phase 1 trial (NCT03362502) ongoing in boys with DMD (ambulatory, 5-10 years old)
- Positive results in first 9 participants (1 year)²
 - Treatment generally well-tolerated
 - Sustained production of mini-dystrophin protein
 - Improved motor function based on NSAA score change (+3.5 points vs -4 points with placebo)
- Global CIFFREO Phase 3 trial is recruiting up to 99 boys with DMD

Phase 3 CIFFREO Trial (NCT04281485): Recruiting

Additional strategies under investigation

Strategy ^{1,2}	Agents ¹	Status ¹
Inhibit myostatin (a muscle growth inhibitor)	DomogrozumabTalditercept alfa	Clinical trials failed to demonstrate therapeutic effect ²
Improve mitochondrial function/ metabolism	Idebenone	Studies terminated due to lack of therapeutic effect ²
Reduce inflammation/ fibrosis and improve regeneration	Givinostat (HDAC inhibitor)	Phase 2/ 3 study ongoing ³ (NCT03373968)
Reduce fibrosis	Pamrevlumab (anti-CTGF monclonal antibody)	Phase 3 trial ongoing (NCT04371666) ^{2,3}
Allogenic cardiosphere-derived cells	CAP-1002	Phase 2 extension ongoing (NCT02485938) ³
Modulate utrophin expression	AAV-based gene delivery (GALG2)	Phase 1/2 trial ongoing (NCT03333590) ³

DMD resources: Clinicians

DMD care recommendations

- Birnkrant et al, 2018. Diagnosis and management of Duchenne muscular dystrophy. *Lancet Neurology* (published as 3-part series)
- NIH clinical trials database
 - o <u>https://clinicaltrials.gov/</u>
- MDA Grand Round webinars:
 - o <u>https://www.mda.org/meded/grand-rounds-webinars</u>
- MDA Clinical Case studies (downloadable pdfs):
 - <u>https://www.mda.org/meded/considerations-in-care-case-studies</u>

the wishes of the patient and family, the plan was to "transition in place"; the

DMD resources: Free genetic testing

MDA/ Invitae Detect Muscular Dystrophy

- Free genetic testing for DMD
- o Remote saliva collection option (ship-to-home) option included
- o <u>https://www.invitae.com/en/detect-muscular-dystrophy/</u>
- MDA-sponsored program: Visit MDA.org or call 1-833-ASK-MDA1

MDA Muscular Dystrophy Association

Decode Duchenne

- Free genetic testing (diagnostic and carrier) and counseling– US and CA only
- o https://www.parentprojectmd.org/about-duchenne/decode-duchenne/

DMD resources: Individuals and families

- MDA clinical trial finder tool: <u>https://www.mda.org/research/clinical-trials</u>
- MDA educational materials (downloadable pdfs):
 - Fact sheet, DMD emergency room card alert, DMD FAQ
 - <u>https://www.mda.org/services/education-</u> <u>materials</u>
- MDA Engage webinars (various topics)
 - <u>https://www.mda.org/care/mda-engage/disease-</u> <u>symposia</u>

Enrolling observational studies

 Patients with DMD may be eligible to participate in ongoing registries or observational studies aimed at improving understanding of DMD

Research area	Select studies (US-based)
Patient registries	 The Duchenne Registry [https://www.duchenneregistry.org/] CureDuchenne Link[™] [https://www.cureduchenne.org/cureduchenne-link/]
Wearable technology	Wearable technology to assess gait function [NCT04193085]
Biomarkers	 Extracellular RNA biomarkers [NCT05016908] MRI and biomarkers [NCT01484678] Biomarker development for MDs [NCT05019625]
Newborn screening	Early check: Expanded screening for newborns [https://earlycheck.org/]

Areas of observational research in DMD

